福彩3D走势图

【刍议培养学生数学思维能力】数学思维能力的培养

来源:PS教程 发布时间:2019-06-21 04:19:56 点击:

  培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。数学教学与思维的关系十分密切,数学教学就是指数学思维活动的教学,数学教学实质上就是学生在教师指导下,通过数学思维活动,学习数学家思维活动的成果,并发展数学思维,使学生的数学思维结构向数学家的思维结构转化的过程。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法:
  1 激发学生思维动机
  动机是人们“因需要而产生的一种心理反映”,它是人们行为活动的内动力。因此,激发学生思维的动机,是培养其思维能力的关键因素。
  教师如何才能激发学生思维动机呢?这就要求教师必须在教学中充分发挥主导作用,根据学生心理特点,教师有意识地挖掘教材中的因素,从学生自身生活需要出发,使其明确知识的价值,从而产生思维的动机。例如:在教学“按比例分配”这一内容时,首先要使学生明确学习这一知识的目的:在平均分不合理的情况下,就产生了按比例分配这种新的分配方法。教学时可设计这样一个问题:一个车间把生产1000个零件的任务交给了张师傅和李师傅,完成任务后要把500元的加工费分给他们。结果张师傅加工了600个零件,李师傅加工了400个零件。这时把500元的加工费平均分给他们合理吗?从而引发出学生探求合理的分配方法的思维动机。
  2 理清学生思维脉络
  在教学中,对于每一个问题,既要考虑它原有的知识基础,又要考虑它下联的知识内容。只有这样,才能更好地激发学生思维,并逐步形成知识脉络。我们教学的关键在于使学生的这种思维脉络清晰化,而理清思维脉络的重点就是抓住思维的起始点和转折点。
  2.1 引导学生抓住思维的起始点。数学知识的脉络是前后衔接、环环紧扣的,并总是按照发生--发展--延伸的自然规律构成每个单元的知识体系。学生获得知识的思维过程也是如此,或从已有的经验开始,或从旧知识引入,这就是思维的开端。例如:在教学“按比例分配”这一内容时,从学生已有知识基础——平均分入手,把握住平均分与按比例分配的关系,即把一个数量平均分就是按照1:1的比例进行分配,从而将学生的思维很自然地引入按比例分配,为学生扫清了认知上的障碍。当然,不同知识、不同学生的思维起点不尽相同,但不管起点如何,作为数学教学中的思维训练必须从思维的“发生点”上起步,以旧知识为依托,并通过“迁移”、“转化”,使学生的思维流程清晰化、条理化、逻辑化。
  2.2 引导学生抓住思维的转折点。学生的思维有时会出现“卡壳”的现象,这就是思维的障碍点。此时教学应适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。
  3 培养学生思维方法
  学生在解决数学问题时,常常需要把面对的问题通过转化、分析、综合、假设等变化成已知的数学问题。在这个思维过程中,要依据具体情况恰当地运用分析与综合、具体与抽象、求同与求异、一般与特殊等思维方法。
  3.1 分析与综合。总起来说,思维就是通过分析、综合来进行的。所谓分析就是把已经认识到的事物之间的联系在认识中分解开来。分析的方法应用在数学教学中,就是由问题入手,逐层确定解决问题的条件。所谓综合就是把原来还没有认识到的事物之间的联系,在认识中建立起来。综合的方法应用在数学教学中,就是由条件入手,逐层确定能够解决的问题。如:一位工人加工一批零件,计划每天加工60个,需30天完成。实际每天加工了90个,照这样计算,可提前几天完成?采用分析的方法。恰当地采用分析或综合的思维方法,有利于沟通条件与问题的联系,建立起清晰的思维脉络。当然,根据具体问题将分析与综合结合起来进行分析,更会提高思维的效果。
  3.2 具体与抽象。生的思维特点是从具体形象思维逐步向抽象逻辑思维过渡。发展学生思维的着眼点应放在逐步过渡上。教学中,结合知识内容,精心组织操作活动,可以帮助学生将抽象的事物具体化。
  3.3 求同与求异。有些数学知识之间既有差别又有千丝万缕的联系。恰当地运用求同与求异的思维方法,通过对相关知识的比较,能够有效地促进学生思维发展。首先,对同一知识进行变式比较,即求同。例如:在教学“平行四边形的认识”这一内容时,将平行四边形变换不同的位置进行比较:通过观察比较,学生认识到几种图形尽管摆放的位置不同,但其本质属性是相同的,即“对边分别平行的四边形”,因为它们都是平行四边形;其次,对易混知识不同点的比较,即求异。例如:解答“按比例分配”应用题经常要运用“求一个数的几分之几是多少”的方法。但是,按比例分配和分数乘法这两类应用题又存在着一定的区别,即前者要通过总份数把比转化成各个部分量是总量的几分之几,再用乘法计算;而后者通常是直接或间接具备所求问题的分率。显然,通过运用求同与求异的思维方法,不但使学生构建了完整的知识体系,而且也发展了学生多极化的思维方法,有利于克服思维定势。
  3.4 一般与特殊。唯物辩证法认为,任何事物都存在着共性与个性。在教学中应注意引导学生观察、思考数学知识的一般性与特殊性,以促进学生思维能力的提高。
  总之,小学数学教学的目的,不仅在于传授知识,让学生、理解、掌握数学知识,更要注重教给学生学习的,学生思维能力和良好的思维品质,这是全面提高学生素质的需要。

推荐访问:刍议 培养学生 思维能力 数学

Copyright @ 2013 - 2018 易啊教育网_免费学习教育网_自学。励志。成长! All Rights Reserved

易啊教育网_免费学习教育网_自学.励志.成长! 版权所有 湘ICP备11019447号-75

南粤风采36选7单期走势图 福彩3D走势图江苏体彩七位数历史开奖号码 体彩排列3走势图 福彩3D走势图华东15选5尾数走势图 福彩双色球在线缩水 浙江体彩6 1游戏规则 河南福彩22选5五位走势图 体彩排列3和值走势图 体彩七星彩基本走势图 浙江体彩20选5走势图 体彩排列5大小分析 江苏体彩七位数大小走势图 辽宁福彩35选7走势图 福彩3D走势图江苏体彩七位数游戏规则 福彩双色球重号走势图 福彩3D走势图体彩排列3历史开奖号码 江苏体彩七位数大小走势图 江苏体彩七位数走势图 齐鲁风采23选5连号分布图 福彩七乐彩中奖规则